Chapter V

Financial Fragility in Stock Markets:

MACRO-MONETARY POLICY ANALYSIS

5.1. INTRODUCTION

The previous chapters were involved with the estimation of the extent of financial fragility in Indian financial markets. In this chapter, the possible impact of monetary policy in controlling the fragility through price formation is sought to be estimated. As monetary policy operates through interest rates mainly, in so far as the stock market is concerned, this chapter estimates the impact of monetary policy on stock prices through the estimation of interest cost sensitivity of stock prices. Interest cost has two components, viz. interest rate and the volume of debt. In estimating sensitivity to monetary policy changes, both the components of interest as mentioned above can be controlled by the Reserve Bank of India through various policy tools, for example, altering the PLR, changing the interest rate on lending by commercial banks to companies which are bank financed. Since a change in the nature of priorities in granting loans alters the volume of term loans available for various types of projects by such borrowing companies, it is sought justified to consider the entire interest cost component of corporate expenditure separately as an explanatory variable in its own right in estimating the pricing equation of the stock market over time. While debt does not consist of borrowings from banks only, which is under the direct control of the Reserve Bank of India, debt costs operating through competitive debt markets are indirectly controlled by the Reserve Bank of India and the Ministry of Finance through its monetary policy and the operation of the money multiplier. 

In estimating the time series properties of price formation in stock markets with interest cost as an explanatory variable, interest cost is differentiated from the profit term by addition and identified separately. The historical data has been, as in the previous chapter, divided into instantaneous, short-run, medium-run and long–run data. Instantaneous analysis requires data generated in continuous time for all variables whether relating to price formation or fundamentals. This study, however, uses discrete time data organised annually into a decade. Hence, this study is both a short-run, as well as, a medium-run study of the stock market system, including interest cost as a fundamental variable. Long-run analysis of stock market data however, requires analysis of historical epochs, which in a semi-planned economy such as the Indian economy, ought to cover more than two consecutive plan periods. This study covers a segment of the 7th Five Year Plan Period, the 8th Five Year Plan Period in full and the first portion of the 9th Five Year Plan Period. This period also witnessed two significant stock market crashes in the years 1993 and 1997 and the “Harshad Mehta scam” in 1992. The time series results have to be analysed against these sets of contemporary history along with the economic causalities outlined in the model (Tobin (1972), Bagchi (1998)).

5.2. TIME SERIES DATA 
Data for the time series regression are obtained from the Prowess database of the Centre for Monitoring Indian Economy. The database contains data for the years 1988-2000. The data have been compiled from the audited annual accounts of public limited companies in India, which furnish annual returns with the Registrar of Companies and are listed on the Bombay Stock Exchange.

In our time series analysis we have used annual series of all the variables, described below, for the period 2000-1990. While higher frequency series for some of the variables are available, since matching series for all the variables are not contained in the database, we have analysed data for years ending 31st December for all variables.

“Average Growth” Data 
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The total market set of companies has been pooled for 10 years from 2000-1990, working backwards. The common set of firms, which have “survived” between 1990-2000 (see Chapter IV), numbers 582 which after adjusting for missing data is left with 571 firms. This is the  “bootstrap” average growth dataset. The graphs for the raw variables are presented in figure 3.2.1.1 to 3.2.1.11  
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Figure 3.2.1.7
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Manufacturing Sector Data 
The only industry that has been considered in isolation from the market dataset is the manufacturing sector. The reason being that the only sector that has a large number of surviving firms between 1990 and 2000 is this sector. Three stages in the algorithm are carried out with respect to this dataset. The 2000–1990 average growth model is fitted as also the 2000–1999 annual growth model is fitted. The fits as well as the errors are then compared to ensure that the errors are uncorrelated. The total number of firms in the first dataset is 392 and in the other case is 2031. The correlation matrices with respect to the two growth models are given in tables 3.2.3.1 and 3.2.3.2.
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NW_SH90
DE_SH90
PI_SH90
IC_SH90
DIV_SH90
GNW_

S10Y
GDE_

S10Y
GPT_

S10Y
GDV_

S10Y
GIC_

S10Y
RET10Y

NW_SH90
1.00
.02
.81*
.43*
.84*
-1.00*
-.03
-.42*
-.51*
-.22*
.22*

DE_SH90
.02
1.00
-.01
-.03
.00
-.02
-.73*
.03
.01
.03
.01

PI_SH90
.81*
-.01
1.00
.70*
.72*
-.81*
-.01
-.59*
-.39*
-.30*
.31*

IC_SH90
.43*
-.03
.70*
1.00
.39*
-.42*
.03
-.43*
-.13*
-.29*
.36*

DIV_SH90
.84*
.00
.72*
.39*
1.00
-.84*
-.01
-.54*
-.68*
-.28*
.10

GNW_S10Y
-1.00*
-.02
-.81*
-.42*
-.84*
1.00
.10
.42*
.51*
.22*
-.22*

GDE_S10Y
-.03
-.73*
-.01
.03
-.01
.10
1.00
-.00
-.01
-.02
-.02

GPT_S10Y
-.42*
.03
-.59*
-.43*
-.54*
.42*
-.00
1.00
.61*
.22*
.21*

GDV_S10Y
-.51*
.01
-.39*
-.13*
-.68*
.51*
-.01
.61*
1.00
.30*
.41*

GIC_SH10Y
-.22*
.03
-.30*
-.29*
-.28*
.22*
-.02
.22*
.30*
1.00
.05

RET10Y
.22*
.01
.31*
.36*
.10
-.22*
-.02
.21*
.41*
.05
1.00

*Marked correlations are significant at p < .05000
N=392
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NW_SH90
DE_SH90
PI_SH90
IC_SH90
DIV_SH90
GNW

_S1Y
GDE

_S1Y
GPT

_S1Y
GDV

_S1Y
GIC

_SH1Y
RET1Y

NW_SH90
1.00
.01
.69*
.24*
.42*
.43*
-.00
.24*
-.01
.14*
-.21*

DE_SH90
.01
1.00
.02
.00
-.00
.01
-.34*
-.00
.00
-.01
.00

PI_SH90
.69*
.02
1.00
.47*
.46*
.31*
-.01
-.27*
-.01
.03
-.22*

IC_SH90
.24*
.00
.47*
1.00
.32*
-.30*
.00
-.11*
.01
.38*
-.12*

DIV_SH90
.42*
-.00
.46*
.32*
1.00
.04
-.00
-.09*
-.56*
-.05*
-.38*

GNW_S1Y
.43*
.01
.31*
-.30*
.04
1.00
-.01
.43*
.27*
-.13*
-.10*

GDE_S1Y
-.00
-.34*
-.01
.00
-.00
-.01
1.00
.00
-.00
.01
.00

GPT_S1Y
.24*
-.00
-.27*
-.11*
-.09*
.43*
.00
1.00
.19*
.13*
.10*

GDV_S1Y
-.01
.00
-.01
.01
-.56*
.27*
-.00
.19*
1.00
.09*
-.02

GIC_SH1Y
.14*
-.01
.03
.38*
-.05*
-.13*
.01
.13*
.09*
1.00
.10*

RET1Y
-.21*
.00
-.22*
-.12*
-.38*
-.10*
.00
.10*
-.02
.10*
1.00


* Marked correlations are significant at p < 0.05
N=2031

5.3. TIME SERIES MODEL

We consider the following time series model for dynamic price formation in Indian Stock Markets.


Pt+1(  Pt = At +B1t NWt + B2t DEt + B3t PIt + B4t DIVt   + B5tICt


    B6t Et Δ NWt + B7t Et Δ DEt + B8t Et Δ PIt + B9t Et Δ DIVt  + B10t Et ∆ ICt
  

    + 
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where, Pt = closing price of shares at 31st December of the year t, 


NWt = Net worth per outstanding equity share at 31st December of the year t,

PIt  = Profit for the year t after adding back the interest cost, per outstanding equity                                           share at 31st December of the year t,
DEt = Debt-Equity ratio at 31st December of the year t,

DIVt = Dividend declared during year t per outstanding equity share at 31st December of the year t,


ICt = Interest cost for the year t,

Δ NWt =  NWt +1  - NWt , is the first forward difference in NW,


Δ PIt = 
  PIt +1  - PIt , is the first forward difference in PI, 


Δ DEt = DEt +1  - DEt, is the first forward difference in DE


Δ DIVt = DIVt +1  - DIVt is the first forward difference in DIV

∆ ICt = ICt+1 – ICt is the first forward difference in IC,

Et is the forward looking Rational Expectations operator with respect to 31st December of year t


[image: image3.wmf]k

t  is a random error term normally distributed with mean 0 and variance matrix
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We shall jointly test for the fit of the model as well as the properties of the error terms hypothesized, with annual data over the period 1990-2000.

The econometric testing of a time series model of this form, which consists of a large cross– section of companies at any given t can be carried out along two directions. The first method is the traditional Vector Auto Regression method of the Box–Jenkins type. In such a method the entire panel data pooled across firms and time periods has to be studied in integrated form to give GLS estimates by this ARIMA model. This has the potential dimensionality cost of there being around 2500 firms for each of the years 1990–2000 with twelve variables, which could potentially become a 2500 X 10 X 12 matrix requiring high computing time and memory costs.   Besides, with a linear model specification such as ours, the nonlinearity involved in the historical behavior of stock prices would not be readily evident till we change our specification and fit a nonlinear model all over again. This prompts us to carry out the Time Series GLS regression in a  “nested” procedure similar in many respects with that suggested by Granger & Newbold (1977) and consists of the following algorithm. This algorithm uses the residual matrix of nested models to set up an objective function based on correlations amongst the nested residuals. While this procedure helps in time series estimation of the parameters along the Granger et. al. approach, it also provides a procedure for estimating TVP (Time Varying Parameter) problems as discussed in Rao (2000), without using any exogenous cost minimisation objectives.

In the first step we break up the pooled time series ARIMA model into nested models identified by years as follows:

[ Pt+1 - Pt ] = [ At + 
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where  C is the number of companies in the data set T is the time “ horizon” which in this case is 1990-2000. Bit is the coefficient on historical variable i at time t where i is the indicator as follows:

i=1 ( NW

i=2 ( DE

i=3 ( PI

i=4 ( DIV

i=5 ( IC

The historical variables are, as given above, the expectation variables follow exactly the same identification, i.e.,


i=6 ( Et Δ NW


i=7 ( Et Δ DE


i=8 ( Et Δ PI


i=9 ( Et Δ DIV


I=10 ( Et ∆ IC

This is the basic time series model.

In the second step, we break up this general ARIMA (1,1,1) specification into first a “bootstrap” average growth model as follows:

P2000 – P1990 =  A + B1 NW1990 + B2 DE1990 + B3 PI1990 + B4 DIV1990 + B5IC1990 + B6 E1990 Δ NW2000-1990 

+ B7 E1990 Δ DE 2000-1990 + B8 E1990 ΔPI 2000-1990 + B9 E1990 ΔDIV2000-1990 
+ B10E1990 ∆ IC2000-1990 + 
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where,   E1990 ΔNW2000-1990 = NW2000 - NW1990 ,


 E1990 ΔDE2000-1990 =  DE2000 - DE1990,


 E1990 ΔPI2000-1990 =  PI2000 - PI1990


 E1990 ΔDIV2000-1990 = DIV2000 - DIV1990

 E1990 ΔIC2000-1990 = IC2000 - IC1990
Thus, here the dependent variable is the total price differential over the decade. Any of the coefficients B6 to B10 is the "average growth" coefficient in the sense that



B6 E1990 Δ NW 2000-1990 = 10 B6 E1990   ΔNW2000-1990







10
This model seems as the benchmark "bootstrap" model for the decade of the 90s.

In the third step, the linear growth assumption along with the 10-year horizon assumption is relaxed  to test a set of four "nested" models, one for each year as follows:


Ret n = An + 
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And growth is taken over 1-year periods working back from 2000 for each n=1,2 and 3, and expectations is forward looking over the one year. Thus for e.g. 


B16 E1 ΔNW1 = B1999,6  (NW2000-NW1999) and so on


Retn =Pn+1 – Pn 
Granger and Newbold (1977) argued that this is a valid procedure for obtaining the Time-Series properties of Stock Price, provided, the residual matrix [
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] does not show significant serial correlation. Therefore the final step in this algorithm is to check for the correlation in the [
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] matrix from the four nested models obtained in step 3. (Since the overall fit will not change much due to the presence of interest cost along with profit in the time series analysis of chapter IV, we only explore the first three annual data sets, taking on faith as before that the long run average growth model will fit better. This may remain as a weakness of the present study.) If the significance of serial correlation is low then this may also be considered as an algorithmic procedure for cointegration of stock price variables. We test these hypotheses in the following sections.      

5.4. TIME SERIES RESULTS (GOODNESS - OF - FIT) 

The "Average Growth " Model 

The average growth model for the ten-year period 2000-1990 is presented. The dataset consists of the entire market data and the partitioned manufacturing data. Both the set of results serve as a bootstrapping benchmark for the linear model specification in the stage one of the modeling algorithm.

The Market Data 

The total number of "surviving" firms between the decade of 31.12.90 and 31.12.2000 is 571 in the total market dataset. The average growth model was run on the set taking annual series as has been discussed before. The results are summarised in the following table:

Variable
B
t (571)
Level of significance

Intercept

NW1990

DE1990

PI1990

IC1990
DIV1990

GNW2000-1990

GDE2000-1990

GPI2000-1990

GDV2000-1990

GIC2000-1990
-12.69

-0.688

-0.156

6.088

-1.659

10.044

-0.615

-0.204

4.762

18.407

-1.092
-1.15

-5.103

-0.168

9.804

-2.88

3.211

-7.46

-0.284

10.209

8.157

-2.245
Insignificant

0%

Insignificant

0%

1%

1%

0%

Insignificant

0%

0%

3%

Thus, the estimated equation becomes:

P2000 - P1990 = -12.69 - 0.688 NW1990 - 0.156 DE1990 + 6.088 PI1990 - 1.659 IC1990 + 10.04 DIV1990

        (-1.15)    (-5.103)       (-0.168)
      (9.804)
     (-2.88)
(3.211)

-0.615 GNW2000-1990 - 0.204 GDE2000-1990 + 4.762 GPI2000-1990 + 18.407 GDV2000-1990 

      (-7.46)

(-0.284)

    (10.209)
(8.157)

- 1.092 GIC2000-1990

      (-2.245)

The R2  is high at 0.52 and the F-statistic is high at 63.36 which is significant at the 0% level and the serial correlation of the residuals is low at 0.08 suggesting a good fit for the model. In fact, the fit of the model improves significantly with the inclusion of the interest cost separately. 

The significant weights on the initial net worth (NW1990), initial profit (PI1990), initial interest cost (IC1990), initial dividend (DIV1990), and in their growth is substantiated by the model, while the signs of the coefficients are suggestive of the predominance of the supply or demand factors over the other, as the case may be. The fitted "price differential" line is plotted in fig. 3.4.1.1 as Ret 10Y.

[image: image28.wmf]Expected

Normal

 PI_SH90

Figure 3.2.1.3
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Manufacturing Sector Data 

The total number of "surviving " firms in the manufacturing sector dataset over the period 2000 -1990 is 392. The average growth linear model was run on the data set taking annual series, as has been discussed, to obtain the GLS estimates. The results are presented in the following table:

Variable
B
t (381)
Level of significance

Intercept

NW1990

DE1990

PI1990

IC1990
DIV1990

GNW2000-1990

GDE2000-1990

GPI2000-1990

GDV2000-1990

GIC2000-1990
-49.98

3.75

-3.89

2.691

2.184

25.5

3.81

-4.04

1.96

35.35

0.61
-2.17

0.0

-0.0

3.95

3.75

4.91

0.0

-0.0

5.7

10.59

1.57
4%

Insignificant

Insignificant

1%

1%

1%

Insignificant

Insignificant

0%

0%

Insignificant

The R2 is high at 0.53.

The graph of the plot of the fitted price differential is shown in figure 3.4.1.2.
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Annual Price Differential Data  

In keeping with the algorithmic approach to the time series analysis of this paper we regress the model on annual data for the periods 2000-1997. We only consider three annual data as they comprise the most recent three years and extrapolate our results on the basis of the results obtained in this section as well as chapter IV. The results of the regression for the various periods within the decade are summarized in the following table 3.4.1.3.1.
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Period
00-99
99-98
98-97

Intercept
-3.12

(-1.11)
22.83

(5.76)
3.76

(4.24)

NW
-0.07

(-2.92)
0.07

(1.91)
0.02

(3.56)

DE
0.02

(0.15)
-0.06

(-0.16)
-0.001

(-0.01)

PI
0.87

(5.79)
1.09

(7.33)
0.123

(2.35)

IC
-0.73

(-4.45)
-0.94

(-6.16)
-0.33

(-5.37)

DIV
-18.12

(-20.79)
7.04

(6.24)
-2.23

(-7.31)

GNW
-0.51

(-5.47)
0.25

(3.92)
-0.32

(-7.49)

GDE
0.006

(0.08)
-0.05

(-0.25)
0.00

(0.09)

GPI
1.42

(8.23)
1.16

(6.37)
0.58

(7.28)

GDV
-14.36

(-12.25)
6.91

(5.40)
1.39

(4.42)

GIC
0.42

(1.41)
-1.78

(-6.27)
-0.64

(-6.75)

R2
0.21
0.09
0.09

F
71.21
28.84
35.68

DW
1.84
1.76
1.98

The fit of the three annual models never perform better than the average growth model over the 10-year horizon, in terms of R2, which has a significantly high R2 at 0.52. Besides the F statistic is significant for the average growth rational expectations model over 10 years and the serial correlation of residuals is also low, rejecting a nonlinear fit to the pricing equation through annual series in favour of a linear fit, as was the case in Chapter IV. This inference is correct based on the comparison of the two sets of models, because  as required by Granger & Newbold (1977), the error correlation matrix among the nested residuals shown in table 3.4.1.3.2 do not show significant serial correlation.

Table 3.4.1.3.2


      E1
      E2
      E3

E1
1.00
-0.09*
-0.00

E2
-0.09*
1.00
0.01

E3
-0.00
0.01
1.00

Marked correlations are significant at p < 0.05000

This rejects the hypothesis of significant correlation, as the maximum magnitude is 0.09. This inference is also true when one compares the manufacturing sector for its fit over 2000-1990 with 2000-1999 the most recent one year. The results for the 2000-1999 period are given in table 3.4.1.3.3. 

Table 3.4.1.3.3

Variable
B
t statistic (2020)
Level of significance

Intercept

NW99

DE99

PI99

IC99

DIV99

GNW

GDE

GPT
GDV

GIC
-1.69

-0.21

0.01

1.83

-0.85

-22.12

-0.6

0.002

2.31

-20.46

1.95
-0.49

-6.57

0.04

8.7

-3.84

-20.84

-5.29

0.03

10.05

-14.49

4.45
Insignificant

0%

Insignificant

0%

1%

0%

0%

Insignificant

0%

0%

1%

Adjusted R2 is 0.27

Here also the average growth ten-year model obtains a better fit, suggesting that the longer term linear rational expectations model performs better. In other words the cointegrated price variables fit better in both cases with a linear average growth trend. Both these observations are somewhat incongruous with a high and significant weightage on historical dividends and dividend growths, which suggest high liquidity preference and therefore "myopia". Associated with this, is a significant positive sensitivity of returns with interest cost, both in levels as well as in growth. Positive elasticity with interest cost suggests that demand effect for manufacturing shares is outweighed by the supply effect (Tobin (1972) for example). This implies that the monetary authority, by adjusting the interest rate, can have a significant positive effect on returns in manufacturing shares. This is true whether the annual 2000-1999 dataset is being discussed or the average growth 10-year 2000-1990 dataset is being considered. 

The fitted lines for the ten-year average growth model and for the 2000-1999 model for the entire market dataset are presented in figures 3.4.1.3.4  and  3.4.1.3.5. 
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5.5. TIME SERIES RESULTS (VOLATILITY)

An analysis of fit of the model to the time series data reveals that, on average a good part of the dynamic price differential is explained by the set of historical and rational expectations variables considered, giving an overall R2 (adjusted for serial autocorrelation and heteroskedasticity) of 0.52 with significant t-statistic on all but the debt-equity variables. The fit of the model in the case of the benchmark set of companies, having market price/face value ratio >=10  (consisting of 93 companies), is significantly higher with an adjusted R2 = 0.77 and significant t-statistic for all but the interest cost and dividend variables. The fit of the model is also striking in the case of the manufacturing sector with an adjusted R2 of 0.53. However, it still leaves a lot of volatility to be explained.

When it comes to an analysis of the volatility in the residuals it is observed that as was true in the case with no interest cost variable, the F-statistic and DW-statistic are both significantly high, leaving therefore the variance to be analysed only (in the general dataset, F = 63.36 and DW= 1.83; in the benchmark dataset, F = 30.99 and DW= 2.02; and in the manufacturing sector data set, F = 44.69 and DW= 1.93). Further an analysis of the correlation matrix across the various "nested " models of annual duration suggest that the across period serial correlations are insignificant. This not only points to the existence of a ten-year set of data cointegrated with the price differentials but also to the fact that residuals follow "random walk" over time at least within this ten-year history. However, after the conditioning on the variables of the model, including the monetary policy variables of interest cost and growth in interest cost, the errors do follow a "random walk" pattern. The reduction in residual variance consequent to the treatment of the interest cost variable in terms of increase in R2 over the ten-year dataset are given in the following table.


Adjusted R2 without monetary policy variables
Adjusted R2 with monetary policy variables

Total Market
0.36
0.52

Benchmark Data Set
0.62
0.77

Manufacturing
0.46
0.53

It has already been noted in previous chapters that "myopia" through dividend and expected dividend dependence operates in contrast to the overriding performance of the longer-term average growth model, which is an anomaly found in this study. However, the significant variance of the residual sum of squares does certainly point direction to speculative "gambling" and "sunspot" components in the stock market. The elasticities of the variances in returns as is captured by the B coefficients in the regression equations are given below for the three datasets in the ten-year average growth model. 


B for Interest Cost
B for Growth in Interest Cost

Total Market
-1.66

(2.88)
-1.09

(-2.24)

Benchmark Data Set
4.21

(1.11 - insignificant)
8.95

(2.41)

Manufacturing
2.18

(3.95)
0.61

(1.57 – insignificant)

Thus, the variability reducing power of the interest variables in all the above three categories of industries is corroborated by the significance of at least one t-statistic in all the cases (as originally suggested in, for example, the Tobin (1972) paper). However, the signs and magnitudes of the coefficients are not uniform even within this ten-year time series analysis. In the overall market data, the Bs lie between 1 and 2 with negative signs. Since interest rates and therefore interest costs are profit-reducing elements for companies, hence, the demand side of the capital market ought to be negatively related to interest (law of demand). On the other hand, supply of capital ought to have a positive relation with interest by savings theories.  Hence, a negative net effect on price differentials suggests that the demand for capital (supply of shares) effect dominates the supply of capital (demand for shares) effect. 

5.6
CONCLUSION

From our discussions above, it can be discerned that, in the case of major blue chip companies, pursual of a “cheap money” policy by the Reserve Bank of India may lead to an increase in the net demand for capital thereby increasing returns on capital through the stock market.

However, other classifications of company groupings do not result in similar observations. In these cases, the supply side of the capital market (i.e. the demand side of the share market) dominates the demand side as it is reflected in a positive interest sensitivity. In more specific terms, as interest (cost) increases, the supply of capital increases as savings increases, part of which is mobilised by financial institutions and channelised into equity markets, leading to increase in demand for shares, resulting in increase in share prices and thus returns. Alternatively, another possible explanation for this may be derived from the positive income effect on demand for shares derived from increase in interest income to savers and the resultant upward pull on share prices resulting from the demand increase. However, on average interest income constitutes a much smaller portion of the income of financial institutions (who are the major investors) compared to income from securities, dividends and capital gains. Hence, this marked shift in the signs of the coefficients is somewhat anomalous, pointing to a possible presence of short-term myopia exacerbating fragility, requiring further in-depth study. 
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